Random permutations and unique fully supported ergodicity for the Euler adic transformation

نویسندگان

  • Sarah Bailey Frick
  • Karl Petersen
چکیده

There is only one fully supported ergodic invariant probability measure for the adic transformation on the space of infinite paths in the graph that underlies the Eulerian numbers. This result may partially justify a frequent assumption about the equidistribution of random permutations. Résumé. Pour la transformation adique sur l’espace des chemins infinis dans le graphe associé aux nombres Euleriens, il n’existe qu’une seule mesure de probabilité ergodique invariante avec support total. Ce résultat peut justifier en partie une hypothèse fréquente sur l’équidistribution des permutations aléatoires. MSC: 37A05; 37A25; 37A50; 37B99; 60B05; 62F07

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ergodicity of the Adic Transformation on the Euler Graph

The Euler graph has vertices labelled (n, k) for n = 0, 1, 2, ... and k = 0, 1, ..., n, with k+1 edges from (n, k) to (n+1, k) and n−k+1 edges from (n, k) to (n+1, k+1). The number of paths from (0,0) to (n, k) is the Eulerian number A(n, k), the number of permutations of 1,2,...,n+1 with exactly n−k falls and k rises. We prove that the adic (Bratteli-Vershik) transformation on the space of inf...

متن کامل

Orbit theory, locally finite permutations and Morse arithmetic

The goal of this paper is to analyze two measure preserving transformation of combinatorial and number-theoretical origin from the point of view of ergodic orbit theory. We study the Morse transformation (in its adic realization in the group Z2 of integer dyadic numbers, as described by the author [J. Sov. Math. 28, 667–674 (1985); St. Petersburg Math. J. 6 (1995), no. 3, 529– 540]) and prove t...

متن کامل

Ergodicity of the adic transformation on the Euler graph 3

The Euler graph has vertices labelled (n, k) for n = 0, 1, 2, ... and k = 0, 1, ..., n, with k + 1 edges from (n, k) to (n + 1, k) and n − k + 1 edges from (n, k) to (n + 1, k + 1). The number of paths from (0,0) to (n, k) is the Eulerian number A(n, k), the number of permutations of 1,2,...,n+ 1 with exactly n− k falls and k rises. We prove that the adic (Bratteli-Vershik) transformation on th...

متن کامل

Automata as $p$-adic Dynamical Systems

The automaton transformation of infinite words over alphabet Fp = {0, 1, . . . , p− 1}, where p is a prime number, coincide with the continuous transformation (with respect to the p-adic metric) of a ring Zp of p-adic integers. The objects of the study are non-Archimedean dynamical systems generated by automata mappings on the space Zp. Measure-preservation (with the respect to the Haar measure...

متن کامل

Random Orderings and Unique Ergodicity of Automorphism Groups

We show that the only random orderings of finite graphs that are invariant under isomorphism and induced subgraph are the uniform random orderings. We show how this implies the unique ergodicity of the automorphism group of the random graph. We give similar theorems for other structures, including, for example, metric spaces. These give the first examples of uniquely ergodic groups, other than ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007